L[

Case Study: Using Generative Al to Accelerate Test Automation
Development

How Structured Al Code Generation Transforms SenseTalk Handler Creation

SenseTalk is a powerful scripting language used across software and hardware
development for test automation. It is part of the Eggplant Functional ecosystem, a platform
known for automating testing through image recognition, text search, and system
interaction.

Unlike traditional programming languages, SenseTalk focuses on behavior-driven testing,
where scripts mimic how real users interact with interfaces. This makes it ideal for
validating complex systems that include both software and hardware components.

At the core of every SenseTalk test is a handler — a reusable block of code that performs a
specific action, such as clicking a button, entering data, or validating system responses.
Handlers are the building blocks of automated test suites. They encapsulate logic, enforce
structure, and ensure repeatable, consistent test behavior.

Creating handlers manually can be time-consuming. Each one must follow strict standards
for naming, documentation, error handling, and structure. Variations in how handlers are
written lead to inconsistency, rework, and reduced maintainability — especially when
multiple engineers or contractors contribute to a project.

By introducing Generative Al into the development process, we can automate the creation
of these handlers while maintaining compliance with coding standards. The Al generates
ready-to-use, fully documented SenseTalk handlers that fit seamlessly into existing
frameworks. This approach shortens development cycles, increases consistency, and
ensures test assets remain usable long after their original creators have moved on.

Executive Overview — The Shift to Al-Augmented Development

Automation programming is changing fast. Generative Al is no longer a test tool or an
experiment. [t's becoming part of how we build and manage code. In our environment, Al
helps write SenseTalk handlers that follow the same standards every time.

This approach gives us a clean way to produce code that is correct, documented, and
reusable without constant human rework. The goal is not to replace engineers, but to make
sure every engineer can create production-quality code faster and with fewer mistakes.

By enforcing structure through templates, Al gives us consistency that manual coding never
could. The end result is faster output, fewer errors, and code that stays useful long after it’s
written.



L[

The Challenge of Manual SenseTalk Development

Manual SenseTalk coding works well, but it’s slow and inconsistent. Every engineer writes
code a little differently, and that becomes a problem when multiple people contribute to the
same project.

There are a few recurring pain points:

- Time spent on setup and documentation.

- Missed syntax or formatting details.

- Logic errors that repeat across scripts.

- Rework every time new engineers join.

- Lost knowledge when contractors finish their term.

Without clear standards, code turns into isolated efforts that don’t scale. Over time, this
slows down testing, increases risk, and makes it harder to keep projects aligned.

The Al-Driven Framework

The solution is structure. Every handler starts from a single Al-driven template that defines
how the code should look and act. The engineer gives the intent — what needs to happen —
and the Al builds the handler to match the standard.

Each generated handler includes:

- A complete comment header with author, purpose, and usage.

- Defined control flow that uses “if,” “then,” “else,” and repeat loops the right way.
- Consistent logging for success, warning, and error messages.

- Parameterized inputs instead of hardcoded values.

- Clear error handling and exit conditions.

” «

The code looks the same every time, no matter who creates it. It’s easy to review, easy to
reuse, and fits directly into existing frameworks.

The Advantage of an Offline Al Environment

In secure or regulated testing environments, external connectivity isn’t an option. To
maintain security while still using Generative Al, we deploy an Offline Al environment — an
isolated model trained for structured code generation.

This Offline Al generates SenseTalk code that matches our standards even without internet
access. Because it operates entirely within the local network, all data stays on-site with no
external data flow. This makes it ideal for classified, enterprise, or government systems that
require full control over inputs and outputs.

The Offline Al balances performance with predictability. It's not designed for general
creativity — it’s designed for consistency, compliance, and reliability. It understands logic,
syntax, and the structure required for automation development, making it a trusted
component of secure automation workflows.



L[

Governance, Validation, and Continuous Improvement

Al output only works when it’s managed. Each handler generation is tested, tracked, and
reviewed. All versions are stored in source control with metadata for author, date, and
purpose. This creates full traceability and makes it possible to audit code later.

Prompt templates that guide the Al are also version-controlled. When issues or
improvements are found, the template is updated and revalidated. This feedback loop helps
the Al perform better over time.

We test and validate Al-generated code before release, the same way we would human
code. Syntax, function, and logic are verified in controlled environments. Regular validation
checks also ensure that the model stays accurate and does not drift from the standard.

This process creates a closed-loop system: generate, validate, improve, repeat. The more we
use it, the more accurate and reliable it becomes.

Collaboration and the Role of the Engineer

Al changes the job, not the need for it. The engineer defines what needs to be done. The Al
builds the structure around that goal. This allows developers to focus on creative logic, test
strategy, and system design instead of repeating setup and formatting tasks.

Al enforces consistency, but people still drive the logic and intent. Engineers review, refine,
and integrate the output into larger workflows. This partnership reduces workload while
improving the overall quality of automation.

It also helps with contractor transitions. Since all generated code follows the same format, a
new engineer can pick up where another left off without confusion. Documentation and
comments are built-in, so knowledge transfer happens automatically.

The Path Forward — Building a Sustainable Automation Ecosystem

The long-term vision is an ecosystem where Al supports every stage of automation — from
code generation to documentation to test validation. Multiple specialized models can work
together, each doing a part of the job: one builds handlers, another documents them, and
another checks results.

This approach scales without increasing headcount or risk. It creates a continuous
improvement cycle that keeps code clean, compliant, and ready for use.

Generative Al does not replace people. It raises the baseline. Every line of code produced
through this framework meets the same high standard, whether it's written by a full-time
engineer or a short-term contractor.

The combination of structure, governance, and Al assistance gives us faster delivery, better
accuracy, and a repeatable process that stands the test of time.



L[

References
1. SenseTalk Reference — Eggplant Functional Documentation, comprehensive

reference for SenseTalk syntax and language use.
2. Objects and Messages — Eggplant Functional Documentation, explains handlers,
objects, and message-passing concepts.
3. About SenseTalk — Eggplant Functional Documentation, provides an overview of
the SenseTalk scripting language.
4. Google Engineering Practices Guide — covers code review, documentation, and
commenting standards for maintainable code.
5. PEP 8 Style Guide for Python Code — widely recognized for coding style,
readability, and documentation discipline.
6. NASA Software Engineering Handbook, Section 5.2 — outlines coding standards
emphasizing clarity and maintainability.
7. NASA-HDBK-2203 Software Engineering Handbook — governance and
traceability for software development.
8. IEEE Std 829-2008 — Software and System Test Documentation standard for
structured and traceable testing documentation.
9. IEEE Std 828-2012 — Configuration Management in Systems and Software
Engineering, covering consistency and revision control.
10. CERT SEI Secure Coding Best Practices — official SEI publication promoting
secure and maintainable coding standards.
11. NIST Al Risk Management Framework (Al RMF 1.0) — provides guidance for
trustworthy and responsible Al system management.
12. NIST Al RMF Playbook — companion resource for implementing Al governance
and validation procedures.

For more information reach out to Technical Systems integrators, Inc.

www.tsieda.com

info@tsieda.com

1-407-339-4874 x102


http://www.tsieda.com/
mailto:info@tsieda.com

